Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 340
Filter
1.
medRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38746245

ABSTRACT

Background: The incidence and mortality rates of hepatocellular carcinoma (HCC) among Hispanics in the United States are much higher than those of non-Hispanic whites. We conducted comprehensive multi-omics analyses to understand molecular alterations in HCC among Hispanic patients. Methods: Paired tumor and adjacent non-tumor samples were collected from 31 Hispanic HCC in South Texas (STX-Hispanic) for genomic, transcriptomic, proteomic, and metabolomic profiling. Additionally, serum lipids were profiled in 40 Hispanic and non-Hispanic patients with or without clinically diagnosed HCC. Results: Exome sequencing revealed high mutation frequencies of AXIN2 and CTNNB1 in STX Hispanic HCCs, suggesting a predominant activation of the Wnt/ß-catenin pathway. The TERT promoter mutation frequency was also remarkably high in the Hispanic cohort. Cell cycles and liver functions were identified as positively- and negatively-enriched, respectively, with gene set enrichment analysis. Gene sets representing specific liver metabolic pathways were associated with dysregulation of corresponding metabolites. Negative enrichment of liver adipogenesis and lipid metabolism corroborated with a significant reduction in most lipids in the serum samples of HCC patients. Two HCC subtypes from our Hispanic cohort were identified and validated with the TCGA liver cancer cohort. The subtype with better overall survival showed higher activity of immune and angiogenesis signatures, and lower activity of liver function-related gene signatures. It also had higher levels of immune checkpoint and immune exhaustion markers. Conclusions: Our study revealed some specific molecular features of Hispanic HCC and potential biomarkers for therapeutic management of HCC and provides a unique resource for studying Hispanic HCC.

2.
J Adv Res ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38735387

ABSTRACT

INTRODUCTION: Psychiatric disorders present a substantial global public health burden with limited drug options. The gut-brain axis connects inflammatory bowel diseases and psychiatric disorders, which often have comorbidities. While some evidence hints at anti-inflammatory drugs aiding in treating psychiatric conditions, the specific effects of intestinal anti-inflammatory drugs remain unclear. OBJECTIVES: This study investigates the causal effect of intestinal anti-inflammatory drug targets on psychiatric disorders. We hypothesize that these drug targets may offer new insights into the treatment and prevention of such disorders. Additionally, we explore gut microbiota's mediating role between drug target genes and psychiatric disorders. METHODS: We performed two-sample Mendelian randomization (MR) using summary data from existing expression quantitative trait loci (eQTL) and protein QTL in the brain, along with public genome-wide association studies of disease. We also explored gut microbiota's mediating effect. The statistics encompassed six psychiatric disorders involving 9,725-500,199 individuals. Colocalization analysis enhanced the MR evidence. RESULTS: We uncovered a causal link between TPMT (a target of olsalazine) expression in the amygdala and bipolar disorder (BD) risk (odds ratio [OR] = 1.08; P = 4.29 × 10-4). This association was observed even when the sigmoid colon and whole blood eQTL were considered as exposures. Colocalization analysis revealed a shared genetic variant (rs11751561) between TPMT expression and BD, with a posterior probability of 61.6 %. Interestingly, this causal effect was influenced by a decrease in the gut microbiota abundance of the genus Roseburia (effect proportion = 10.05 %). Moreover, elevated ACAT1 expression was associated with higher obsessive-compulsive disorder risk (OR = 1.62; P = 3.64 × 10-4; posterior probability = 3.1 %). CONCLUSION: These findings provide novel targets for the treatment of psychiatric disorders, underscore the potential of repurposing olsalazine, and emphasize the importance of TPMT and ACAT1 in future drug development.

3.
Article in English | MEDLINE | ID: mdl-38727094

ABSTRACT

Commercial nickel foam (NF), which is composed of numerous interconnected ligaments and hundred-micron pores, is widely acknowledged as a current collector/electrode material for catalysis, sensing, and energy storage applications. However, the commonly used NF often does not work satisfactorily due to its smooth surface and hollow structure of the ligaments. Herein, a gas-phase-induced engineering, two-step gaseous oxidation-reduction (GOR) is presented to directly transform the thin-walled hollow ligament of NF into a three-dimensional (3D) nanoporous prism structure, resulting in the fabrication of a unique hierarchical porous nickel foam (HPNF). This 3D nanoporous architecture is achieved by utilizing the spontaneous reconstruction of nickel atoms during volume expansion and contraction in the GOR process. The process avoids the involution of acid-base corrosion and sacrificial components, which are facile, environmentally friendly, and suitable for large-scale fabrication. Furthermore, MnO2 is electrochemically deposited on the HPNF to form a supercapacitor electrode (HPNF/MnO2). Because of the fully open structure for ion transport, superhydrophilic properties, and the increased contact area between MnO2 and the current collector, the HPNF/MnO2 electrode exhibits a high specific capacitance of 997.5 F g-1 at 3 A g-1 and remarkable cycling stability with 99.6% capacitance retention after 20000 cycles in 0.1 M Na2SO4 electrolyte, outperforming most MnO2-based supercapacitor electrodes.

4.
Materials (Basel) ; 17(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612149

ABSTRACT

Perovskite-style materials are cathode systems known for their stability in solid oxide fuel cells (SOFCs). Pr0.5Sr0.5FeO3-δ (PSF) exhibits excellent electrode performance in perovskite cathode systems at high temperatures. Via VB subgroup metals (V, Nb, and Ta) modifying the B-site, the oxidation and spin states of iron elements can be adjusted, thereby ultimately adjusting the cathode's physicochemical properties. Theoretical predictions indicate that PSF has poor stability, but the relative arrangement of the three elements on the B-site can significantly improve this material's properties. The modification of Nb has a large effect on the stability of PSF cathode materials, reaching a level of -2.746 eV. The surface structure of PSF becomes slightly more stable with an increase in the percentage of oxygen vacancy structures, but the structural instability persists. Furthermore, the differential charge density distribution and adsorption state density of the three modified cathode materials validate our adsorption energy prediction results. The initial and final states of the VB subgroup metal-doped PSF indicate that PSFN is more likely to complete the cathode surface adsorption reaction. Interestingly, XRD and EDX characterization are performed on the synthesized pure and Nb-doped PSF material, which show the orthorhombic crystal system of the composite theoretical model structure and subsequent experimental components. Although PSF exhibits strong catalytic activity, it is highly prone to decomposition and instability at high temperatures. Furthermore, PSFN, with the introduction of Nb, shows greater stability and can maintain its activity for the ORR. EIS testing clearly indicates that Nb most significantly improves the cathode. The consistency between the theoretical predictions and experimental validations indicates that Nb-doped PSF is a stable and highly active cathode electrode material with excellent catalytic activity.

5.
J Clin Neurosci ; 123: 137-147, 2024 May.
Article in English | MEDLINE | ID: mdl-38574685

ABSTRACT

OBJECTIVE: This study aimed to analyze the risk factors for recurrent ischemic stroke in patients with symptomatic intracranial atherosclerotic stenosis (ICAS) who underwent successful stent placement and to establish a nomogram prediction model. METHODS: We utilized data from a prospective collection of 430 consecutive patients at Jining NO.1 People's Hospital from November 2021 to November 2022, conducting further analysis on the subset of 400 patients who met the inclusion criteria. They were further divided into training (n=321) and validation (n=79) groups. In the training group, we used univariate and multivariate COX regression to find independent risk factors for recurrent stroke and then created a nomogram. The assessment of the nomogram's discrimination and calibration was performed through the examination of various measures including the Consistency index (C-index), the area under the receiver operating characteristic (ROC) curves (AUC), and the calibration plots. Decision curve analysis (DCA) was used to evaluate the clinical utility of the nomogram by quantifying the net benefit to the patient under different threshold probabilities. RESULTS: The nomogram for predicting recurrent ischemic stroke in symptomatic ICAS patients after stent placement utilizes six variables: coronary heart disease (CHD), smoking, multiple ICAS, systolic blood pressure (SBP), in-stent restenosis (ISR), and fasting plasma glucose. The C-index (0.884 for the training cohort and 0.87 for the validation cohort) and the time-dependent AUC (>0.7) indicated satisfactory discriminative ability of the nomogram. Furthermore, DCA indicated a clinical net benefit from the nomogram. CONCLUSIONS: The predictive model constructed includes six predictive factors: CHD, smoking, multiple ICAS, SBP, ISR and fasting blood glucose. The model demonstrates good predictive ability and can be utilized to predict ischemic stroke recurrence in patients with symptomatic ICAS after successful stent placement.


Subject(s)
Intracranial Arteriosclerosis , Ischemic Stroke , Nomograms , Recurrence , Stents , Humans , Male , Female , Intracranial Arteriosclerosis/surgery , Intracranial Arteriosclerosis/diagnostic imaging , Middle Aged , Ischemic Stroke/surgery , Ischemic Stroke/etiology , Aged , Risk Factors , Prospective Studies , Constriction, Pathologic/surgery
6.
Inorg Chem ; 63(15): 6743-6751, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38573011

ABSTRACT

The development of a solid-state electrolyte (SSE) is crucial for overcoming the side reactions of metal potassium anodes and advancing the progress of K-ion batteries (KIBs). Exploring the diffusion mechanism of the K ion in SSE is important for deepening our understanding and promoting its development. In this study, we conducted static calculations and utilized deep potential molecular dynamics (DeepMD) to investigate the behavior of cubic K3SbS4. The original K3SbS4 exhibited poor ionic conductivity, but we discovered that introducing heterovalent tungsten doping created vacancies, which significantly reduced the activation energy to 0.12 eV and enhanced the ionic conductivity to 1.80 × 10-2 S/cm. The diffusion of K-ions in K3SbS4 primarily occurs through the exchange of positions with K vacancies. This research provides insights into the design of SSE with high ionic conductivity. Furthermore, it highlights the effectiveness of DeepMD as a powerful tool for studying the SSE.

7.
Antioxidants (Basel) ; 13(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38671846

ABSTRACT

Redox regulatory drug (RRD) targets may be considered potential novel drug targets of psychosis due to the fact that the brain is highly susceptible to oxidative stress imbalance. The aim of the present study is to identify potential associations between RRD targets' perturbation and the risk of psychoses; to achieve this, Mendelian randomization analyses were conducted. The expression quantitative trait loci (eQTL) and protein QTL data were used to derive the genetic instrumental variables. We obtained the latest summary data of genome-wide association studies on seven psychoses as outcomes, including schizophrenia (SCZ), bipolar disorder (BD), major depressive disorder (MDD), attention-deficit/hyperactivity disorder, autism, obsessive-compulsive disorder and anorexia nervosa. In total, 95 unique targets were included in the eQTL panel, and 48 targets in the pQTL one. Genetic variations in the vitamin C target (OGFOD2, OR = 0.784, p = 2.14 × 10-7) and melatonin target (RORB, OR = 1.263, p = 8.80 × 10-9) were significantly related to the risk of SCZ. Genetic variation in the vitamin E (PRKCB, OR = 0.248, p = 1.24 × 10-5) target was related to an increased risk of BD. Genetic variation in the vitamin C target (P4HTM: cerebellum, OR = 1.071, p = 4.64 × 10-7; cerebellar hemisphere, OR = 1.092, p = 1.98 × 10-6) was related to an increased risk of MDD. Cognitive function mediated the effects on causal associations. In conclusion, this study provides supportive evidence for a causal association between RRD targets and risk of SCZ, BD or MDD, which were partially mediated by cognition.

8.
Adv Mater ; : e2400103, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573809

ABSTRACT

Hydrogel-based electronics have inherent similarities to biological tissues and hold potential for wearable applications. However, low conductivity, poor stretchability, nonpersonalizability, and uncontrollable dehydration during use limit their further development. In this study, projection stereolithography 3D printing high-conductive hydrogel for flexible passive wireless sensing is reported. The prepared photocurable silver-based hydrogel is rapidly planarized into antenna shapes on substrates using surface projection stereolithography. After partial dehydration, silver flakes within the circuits form sufficient conductive pathways to achieve high conductivity (387 S cm-1). By sealing the circuits to prevent further dehydration, the resistance remains stable when tensile strain is less than 100% for at least 30 days. Besides, the sealing materials provide versatile functionalities, such as stretchability and shape memory property. Customized flexible radio frequency identification tags are fabricated by integrating with commercial chips to complete the accurate recognition of eye movement, realizing passive wireless sensing.

9.
Mol Psychiatry ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336841

ABSTRACT

Antipsychotic-induced weight gain (AIWG) is a common side effect of antipsychotic medication and may contribute to diabetes and coronary heart disease. To expand the unclear genetic mechanism underlying AIWG, we conducted a two-stage genome-wide association study in Han Chinese patients with schizophrenia. The study included a discovery cohort of 1936 patients and a validation cohort of 534 patients, with an additional 630 multi-ancestry patients from the CATIE study for external validation. We applied Mendelian randomization (MR) analysis to investigate the relationship between AIWG and antipsychotic-induced lipid changes. Our results identified two novel genome-wide significant loci associated with AIWG: rs10422861 in PEPD (P = 1.373 × 10-9) and rs3824417 in PTPRD (P = 3.348 × 10-9) in Chinese Han samples. The association of rs10422861 was validated in the European samples. Fine-mapping and functional annotation revealed that PEPD and PTPRD are potentially causal genes for AIWG, with their proteins being prospective therapeutic targets. Colocalization analysis suggested that AIWG and type 2 diabetes (T2D) shared a causal variant in PEPD. Polygenic risk scores (PRSs) for AIWG and T2D significantly predicted AIWG in multi-ancestry samples. Furthermore, MR revealed a risky causal effect of genetically predicted changes in low-density lipoprotein cholesterol (P = 7.58 × 10-4) and triglycerides (P = 2.06 × 10-3) caused by acute-phase of antipsychotic treatment on AIWG, which had not been previously reported. Our model, incorporating antipsychotic-induced lipid changes, PRSs, and clinical predictors, significantly predicted BMI percentage change after 6-month antipsychotic treatment (AUC = 0.79, R2 = 0.332). Our results highlight that the mechanism of AIWG involves lipid pathway dysfunction and may share a genetic basis with T2D through PEPD. Overall, this study provides new insights into the pathogenesis of AIWG and contributes to personalized treatment of schizophrenia.

10.
Autophagy ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38390831

ABSTRACT

Infectious diseases, such as Mycobacterium tuberculosis (Mtb)-caused tuberculosis (TB), remain a global threat exacerbated by increasing drug resistance. Host-directed therapy (HDT) is a promising strategy for infection treatment through targeting host immunity. However, the limited understanding of the function and regulatory mechanism of host factors involved in immune defense against infections has impeded HDT development. Here, we identify the ubiquitin ligase (E3) TRIM27 (tripartite motif-containing 27) as a host protective factor against Mtb by enhancing host macroautophagy/autophagy flux in an E3 ligase activity-independent manner. Mechanistically, upon Mtb infection, nuclear-localized TRIM27 increases and functions as a transcription activator of TFEB (transcription factor EB). Specifically, TRIM27 binds to the TFEB promoter and the TFEB transcription factor CREB1 (cAMP responsive element binding protein 1), thus enhancing CREB1-TFEB promoter binding affinity and promoting CREB1 transcription activity toward TFEB, eventually inducing autophagy-related gene expression as well as autophagy flux activation to clear the pathogen. Furthermore, TFEB activator 1 can rescue TRIM27 deficiency-caused decreased autophagy-related gene transcription and attenuated autophagy flux, and accordingly suppressed the intracellular survival of Mtb in cell and mouse models. Taken together, our data reveal that TRIM27 is a host defense factor against Mtb, and the TRIM27-CREB1-TFEB axis is a potential HDT-based TB target that can enhance host autophagy flux.

12.
BMC Musculoskelet Disord ; 25(1): 107, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38308240

ABSTRACT

BACKGROUND: To investigate the biomechanical effects of screw orientation and fracture block size on the internal fixation system for Letenneur type II Hoffa fractures. METHODS: The fracture models were randomly divided into six groups according to the fracture subtypes and the direction of nail placement, and a plumb line of the posterior condylar tangent was made across the base of the posterior femoral condyle. The fracture blocks of the three types of fracture were calculated and recorded in the sagittal position, and the biomechanical performance of the six groups was evaluated by biomechanical tests. The axial load on the fracture block at a displacement of 2 mm was set as the failure load, a gradually increasing axial load was applied to each fracture model using a customized indenter at a load of 250-750 N, and the displacements and failure loads of the six groups were recorded at different axial loads. RESULTS: Biomechanical test results showed that the larger the fracture block, the greater was the stability when nailing from front to back, and the smaller the fracture block, the greater was the strength when nailing from back to front (p < 0.001). As the fracture block became larger, the biomechanical advantage of nailing from posterior to anterior decreased.The displacement under 250 N load were 1.351 ± 0.113 mm, 1.465 ± 0.073 mm for Group IIa AP and Group IIa PA. The displacement under 500 N load were 2.596 ± 0.125 mm, 2.344 ± 0.099 mm for Group IIa AP and Group IIa PA. The displacement under 750 N load were 3.997 ± 0.164, 3.386 ± 0.125 mm for Group IIa AP and Group IIa PA. The failure loads were 384 ± 14 N, 415 ± 19 N for Group IIa AP and Group IIa PA. In the type IIa fracture group, the difference was no longer significant (p > 0.001). Therefore, there is a mechanical threshold that ranges from 38.36 to 52.33% between type IIa and type IIb fractures. CONCLUSIONS: The effect of the nailing direction on the strength of fixation has a fracture-block critical point, which is consistent overall with the trend that the larger the fracture block is, the greater the stability when nailing from anterior to posterior, and the smaller the fracture block is, the greater the strength when nailing from posterior to anterior.


Subject(s)
Bone Screws , Femoral Fractures , Humans , Biomechanical Phenomena , Fracture Fixation, Internal/methods , Femur , Femoral Fractures/diagnostic imaging , Femoral Fractures/surgery
13.
Nat Commun ; 15(1): 818, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280869

ABSTRACT

Animal studies have demonstrated the ability of pancreatic acinar cells to transform into pancreatic ductal adenocarcinoma (PDAC). However, the tumorigenic potential of human pancreatic acinar cells remains under debate. To address this gap in knowledge, we expand sorted human acinar cells as 3D organoids and genetically modify them through introduction of common PDAC mutations. The acinar organoids undergo dramatic transcriptional alterations but maintain a recognizable DNA methylation signature. The transcriptomes of acinar organoids are similar to those of disease-specific cell populations. Oncogenic KRAS alone do not transform acinar organoids. However, acinar organoids can form PDAC in vivo after acquiring the four most common driver mutations of this disease. Similarly, sorted ductal cells carrying these genetic mutations can also form PDAC, thus experimentally proving that PDACs can originate from both human acinar and ductal cells. RNA-seq analysis reveal the transcriptional shift from normal acinar cells towards PDACs with enhanced proliferation, metabolic rewiring, down-regulation of MHC molecules, and alterations in the coagulation and complement cascade. By comparing PDAC-like cells with normal pancreas and PDAC samples, we identify a group of genes with elevated expression during early transformation which represent potential early diagnostic biomarkers.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Humans , Transcriptome , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Carcinogenesis/pathology , Acinar Cells/metabolism , Gene Expression Profiling , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
14.
IEEE Trans Image Process ; 33: 1002-1015, 2024.
Article in English | MEDLINE | ID: mdl-38252568

ABSTRACT

Single image dehazing is a challenging ill-posed problem which estimates latent haze-free images from observed hazy images. Some existing deep learning based methods are devoted to improving the model performance via increasing the depth or width of convolution. The learning ability of Convolutional Neural Network (CNN) structure is still under-explored. In this paper, a Detail-Enhanced Attention Block (DEAB) consisting of Detail-Enhanced Convolution (DEConv) and Content-Guided Attention (CGA) is proposed to boost the feature learning for improving the dehazing performance. Specifically, the DEConv contains difference convolutions which can integrate prior information to complement the vanilla one and enhance the representation capacity. Then by using the re-parameterization technique, DEConv is equivalently converted into a vanilla convolution to reduce parameters and computational cost. By assigning the unique Spatial Importance Map (SIM) to every channel, CGA can attend more useful information encoded in features. In addition, a CGA-based mixup fusion scheme is presented to effectively fuse the features and aid the gradient flow. By combining above mentioned components, we propose our Detail-Enhanced Attention Network (DEA-Net) for recovering high-quality haze-free images. Extensive experimental results demonstrate the effectiveness of our DEA-Net, outperforming the state-of-the-art (SOTA) methods by boosting the PSNR index over 41 dB with only 3.653 M parameters. (The source code of our DEA-Net is available at https://github.com/cecret3350/DEA-Net.).

15.
Sensors (Basel) ; 24(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38257719

ABSTRACT

For covert communication in lossy channels, it is necessary to consider that the carrier of the hidden watermark will undergo multiple image-processing attacks. In order to ensure that secret information can be extracted without distortion from the watermarked images that have undergone attacks, in this paper, we design a novel fragmented secure communication system. The sender will fragment the secret data to be transmitted and redundantly hide it in a large number of multimodal carriers of messenger accounts on multiple social platforms. The receiver receives enough covert carriers, extracts each fragment, and concatenates the transmitted secret data. This article uses the image carrier as an example to fragment the text file intended for transmission and embeds it into a large number of images, with each fragment being redundant and embedded into multiple images. In this way, at the receiving end, only enough stego images need to be received to extract the information in each image, and then concatenate the final secret file. In order to resist various possible attacks during image transmission, we propose a strong robust image watermarking method. This method adopts a watermark layer based on DFT, which has high embedding and detection efficiency and good invisibility. Secondly, a watermark layer based on DCT is adopted, which can resist translation attacks, JPEG attacks, and other common attacks. Experiments have shown that our watermarking method is very fast; both the embedding time and the extraction time are less than 0.15 s for images not larger than 2000×2000. Our watermarking method has very good invisibility with 41dB PSNR on average. And our watermarking method is more robust than existing schemes and robust to nearly all kinds of attacks. Based on this strong robust image watermarking method, the scheme of fragmenting and hiding redundant transmission content into a large number of images is effective and practical. Our scheme can 100% restore the secret file completely under different RST or hybrid attacks, such as rotation by 1 degree and 5 degrees, scaling by 1.25 and 0.8, and cropping by 10% and 25%. Our scheme can successfully restore the secret file completely even if 30% of received images are lost. When 80% of received images are lost, our scheme can still restore 61.1% of the secret file. If all stego images can be obtained, the original text file can be completely restored.

16.
Environ Toxicol Chem ; 43(4): 762-771, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38088253

ABSTRACT

Benzotriazole ultraviolet (UV) stabilizers (BUVSs) are used in great quantities during industrial production of a variety of consumer and industrial goods. As a result of leaching and spill, BUVSs are detectable ubiquitously in the environment. As of May 2023, citing concerns related to bioaccumulation, biomagnification, and environmental persistence, (B)UV(S)-328 was recommended to be listed under Annex A of the Stockholm Convention on Persistent Organic Pollutants. However, a phaseout of UV-328 could result in a regrettable substitution because the replacement chemical(s) could cause similar or unpredicted toxicity in vivo, relative to UV-328. Therefore, the influence of UV-327, a potential replacement of UV-328, was investigated with respect to early life development of newly fertilized rainbow trout embryos (Oncorhynchus mykiss), microinjected with environmentally relevant concentrations of UV-327. Developmental parameters (standard length), energy consumption (yolk area), heart function, blue sac disease, mortality, and behavior were investigated. Alevins at 14 days posthatching, exposed to 107 ng UV-327 g-1 egg, presented significant signs of hyperactivity; they moved on average 1.8-fold the distance and at 1.5-fold the velocity of controls. Although a substantial reduction in body burden of UV-327 was observed at hatching, it is postulated that UV-327, due to its lipophilic properties, interfered with neurological development and signaling from the onset of neurogenesis. If these results hold true across multiple taxa and species, a potential contributor to neurodevelopmental disorders might have been identified. These findings suggest that UV-327 poses an unknown hazard to rainbow trout embryos and alevins, rendering UV-327 a potential regrettable substitution to UV-328. However, a qualified statement on a regrettable substitution requires a comparative investigation on the teratogenic effects between the two BUVSs. Environ Toxicol Chem 2024;43:762-771. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Oncorhynchus mykiss , Animals , Triazoles/toxicity
17.
Environ Toxicol Chem ; 43(2): 385-397, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37975561

ABSTRACT

Benzotriazole ultraviolet stabilizers (BUVSs) are emerging contaminants of concern. They are added to a variety of products, including building materials, personal care products, paints, and plastics, to prevent degradation caused by ultraviolet (UV) light. Despite widespread occurrence in aquatic environments, little is known regarding the effects of BUVSs on aquatic organisms. The aim of the present study was to characterize the effects of exposure to 2-(2H-benzotriazol-2-yl)-4-methylphenol (UV-P) on the reproductive success of zebrafish (Danio rerio) following embryonic exposure. Embryos were exposed, by use of microinjection, to UV-P at <1.5 (control), 2.77, and 24.25 ng/g egg, and reared until sexual maturity, when reproductive performance was assessed, following which molecular and biochemical endpoints were analyzed. Exposure to UV-P did not have a significant effect on fecundity. However, there was a significant effect on fertilization success. Using UV-P-exposed males and females, fertility was decreased by 8.75% in the low treatment group and by 15.02% in the high treatment group relative to control. In a reproduction assay with UV-P-exposed males and control females, fertility was decreased by 11.47% in the high treatment group relative to the control. Embryonic exposure to UV-P might have perturbed male sex steroid synthesis as indicated by small changes in blood plasma concentrations of 17ß-estradiol and 11-ketotestosterone, and small statistically nonsignificant decreases in mRNA abundances of cyp19a1a, cyp11c1, and hsd17b3. In addition, decreased transcript abundances of genes involved in spermatogenesis, such as nanos2 and dazl, were observed. Decreases in later stages of sperm development were observed, suggesting that embryonic exposure to UV-P impaired spematogenesis, resulting in decreased sperm quantity. The present study is the first to demonstrate latent effects of BUVSs, specifically on fish reproduction. Environ Toxicol Chem 2024;43:385-397. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Cresols , Triazoles , Water Pollutants, Chemical , Zebrafish , Animals , Female , Male , Semen , Reproduction , Fertility , Water Pollutants, Chemical/metabolism
18.
Glob Chang Biol ; 30(1): e17007, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37916453

ABSTRACT

Mangroves play a globally significant role in carbon capture and storage, known as blue carbon ecosystems. Yet, there are fundamental biogeochemical processes of mangrove blue carbon formation that are inadequately understood, such as the mechanisms by which mangrove afforestation regulates the microbial-driven transfer of carbon from leaf to below-ground blue carbon pool. In this study, we addressed this knowledge gap by investigating: (1) the mangrove leaf characteristics using state-of-the-art FT-ICR-MS; (2) the microbial biomass and their transformation patterns of assimilated plant-carbon; and (3) the degradation potentials of plant-derived carbon in soils of an introduced (Sonneratia apetala) and a native mangrove (Kandelia obovata). We found that biogeochemical cycling took entirely different pathways for S. apetala and K. obovata. Blue carbon accumulation and the proportion of plant-carbon for native mangroves were high, with microbes (dominated by K-strategists) allocating the assimilated-carbon to starch and sucrose metabolism. Conversely, microbes with S. apetala adopted an r-strategy and increased protein- and nucleotide-biosynthetic potentials. These divergent biogeochemical pathways were related to leaf characteristics, with S. apetala leaves characterized by lower molecular-weight, C:N ratio, and lignin content than K. obovata. Moreover, anaerobic-degradation potentials for lignin were high in old-aged soils, but the overall degradation potentials of plant carbon were age-independent, explaining that S. apetala age had no significant influences on the contribution of plant-carbon to blue carbon. We propose that for introduced mangroves, newly fallen leaves release nutrient-rich organic matter that favors growth of r-strategists, which rapidly consume carbon to fuel growth, increasing the proportion of microbial-carbon to blue carbon. In contrast, lignin-rich native mangrove leaves shape K-strategist-dominated microbial communities, which grow slowly and store assimilated-carbon in cells, ultimately promoting the contribution of plant-carbon to the remarkable accumulation of blue carbon. Our study provides new insights into the molecular mechanisms of microbial community responses during reforestation in mangrove ecosystems.


Subject(s)
Carbon Sequestration , Ecosystem , Lignin , Plant Leaves , Carbon , Soil , Wetlands
19.
Adv Healthc Mater ; 13(10): e2303499, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38109414

ABSTRACT

Chronic wound healing remains a substantial clinical challenge. Current treatments are often either prohibitively expensive or insufficient in meeting the various requirements needed for effective diabetic wound healing. A 4D printing multifunctional hydrogel dressing is reported here, which aligns perfectly with wounds owning various complex shapes and depths, promoting both wound closure and tissue regeneration. The hydrogel is prepared via digital light process (DLP) 3D printing of the mixture containing N-isopropylacrylamide (NIPAm), curcumin-loaded Pluronic F127 micelles (Cur-PF127), and poly(ethylene glycol) diacrylate-dopamine (PEGDA575-Do), a degradable crosslinker. The use of PEGDA575-Do ensures tissue adhesion and degradability, and cur-PF127 serves as an antibacterial agent. Moreover, the thermo-responsive mainchains (i.e., polymerized NIPAm) enables the activation of wound contraction by body temperature. The features of the prepared hydrogel, including robust tissue adhesion, temperature-responsive contraction, effective hemostasis, spectral antibacterial, biocompatibility, biodegradability, and inflammation regulation, contribute to accelerating diabetic wound healing in Methicillin-resistant Staphylococcus aureus (MRSA)-infected full-thickness skin defect diabetic rat models and liver injury mouse models, highlighting the potential of this customizable, mechanobiological, and inflammation-regulatory dressing to expedite wound healing in various clinical settings.


Subject(s)
Diabetes Mellitus , Methicillin-Resistant Staphylococcus aureus , Mice , Animals , Rats , Hydrogels/pharmacology , Tissue Adhesions , Wound Healing , Anti-Bacterial Agents/pharmacology , Inflammation
20.
Water Res ; 250: 121010, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38142507

ABSTRACT

Cylindrospermopsin (CYN) can induce phytoplankton community to secrete alkaline phosphatase (ALP), which is one of the important strategies for the bloom-forming cyanobacterium Raphidiopsis to thrive in extremely low-phosphorus (P) waters. However, how bacterioplankton community, another major contributor to ALPs in waters, couples to Raphidiopsis through CYN, and the role of this coupling in supporting the dominance of Raphidiopsis in nature remain largely unknown. Here, we conducted microcosm experiments to address this knowledge gap, using a combination of differential filtration-based and metagenomics-based methods to identify the sources of ALPs. We found that, compared with algal-derived ALPs, bacteria-derived ALPs exhibited a more pronounced and sensitive response to CYN. This response to CYN was enhanced under low-P conditions. Interestingly, we found that Verrucomicrobia made the largest contribution to the total abundance of pho genes, which encode ALPs. Having high gene abundance of the CYN-sensing PI3K-AKT signaling pathway, Verrucomicrobia's proportion increased with higher concentrations of CYN under low-P conditions, thereby explaining the observed increase in pho gene abundance. Compared with other cyanobacterial genera, Raphidiopsis had a higher abundance of the pst gene. This suggests that Raphidiopsis exhibited a greater capacity to uptake the inorganic P generated by ALPs secreted by other organisms. Overall, our results reveal the mechanism of CYN-induced ALP secretion and its impact on planktonic P-cycling, and provide valuable insights into the role of CYN in supporting the formation of Raphidiopsis blooms.


Subject(s)
Alkaloids , Cyanobacteria , Phosphatidylinositol 3-Kinases , Phosphatidylinositol 3-Kinases/metabolism , Cyanobacteria/metabolism , Cyanobacteria Toxins , Phosphorus/metabolism , Uracil
SELECTION OF CITATIONS
SEARCH DETAIL
...